

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

mark is for method				
mark is dependent on one or more M marks and is for method				
mark is dependent on M or m marks and is for accuracy				
mark is independent of M or m marks and is for method and accuracy				
mark is for explanation				
follow through from previous				
incorrect result	MC	mis-copy		
correct answer only	MR	mis-read		
correct solution only	RA	required accuracy		
anything which falls within	FW	further work		
anything which rounds to	ISW	ignore subsequent work		
any correct form	FIW	from incorrect work		
answer given	BOD	given benefit of doubt		
special case	WR	work replaced by candidate		
or equivalent	FB	formulae book		
2 or 1 (or 0) accuracy marks	NOS	not on scheme		
deduct <i>x</i> marks for each error	G	graph		
no method shown	c	candidate		
possibly implied	sf	significant figure(s)		
substantially correct approach	dp	decimal place(s)		
	mark is for method mark is dependent on one or more M mar mark is dependent on M or m marks and mark is independent of M or m marks and mark is for explanation follow through from previous incorrect result correct answer only correct solution only anything which falls within anything which falls within anything which rounds to any correct form answer given special case or equivalent 2 or 1 (or 0) accuracy marks deduct <i>x</i> marks for each error no method shown possibly implied substantially correct approach	mark is for methodmark is dependent on one or more M marks and is for mmark is dependent on M or m marks and is for accuracymark is independent of M or m marks and is for methodmark is for explanationfollow through from previousincorrect resultMCcorrect answer onlyMRcorrect solution onlyRAanything which falls withinFWanything which rounds toISWanycorrect formFIWanswer givenBODspecial caseWRor equivalentFB2 or 1 (or 0) accuracy marksNOSdeduct x marks for each errorGno method showncpossibly impliedsfsubstantially correct approachdp		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2		1		
Question	Solution	Marks	Total	Comments
1(a)	Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 5^2 \times \theta$ 12 5 $\theta = 8$ 1 $\rightarrow \theta = 0.648$	M1	2	$\frac{1}{2}r^2\theta$ seen or used AG Condone $\theta = 0.648$ used to show that
	12.50 - 0.1 - 0 - 0.040	AI	2	area = 8.1
(b)	Arc = 5θ ; = 3.24 cm	$\begin{array}{c} M1 \\ A1 \\ A1 \end{array}$	2	5θ PI by a correct perimeter
	\rightarrow Perimeter – 10 + arc – 13.24 cm	AIV	Ç	condone 3sf i.e. 13.2 if no obvious error NMS 3/3
	Total		5	
2(a)	$\frac{\sin B}{4.8} = \frac{\sin 100}{12}$	M1		Use of the sine rule
	$\sin B = \frac{4.8\sin 100}{12} \ [= 0.39(392)]$	m1		Rearrangement
	$(angle ABC) = 23.19(8) \{= 23.2^{\circ}.\}$	A1	3	AG Need >1dp eg 23.19 or 23.20
(b)	Angle $C = 80^{\circ} - 23.2^{\circ} = 56.8^{\circ}$	M1		Valid method to find a relevant angle eg C (PI eg by correct sin C) or $23.2^{\circ}+10^{\circ}$
	Area of triangle = $0.5 \times 12 \times 4.8 \times \sin C$	M1		OE eg 0.5×4.8×12×cos (<i>B</i> +10)
	$\dots = 24.09 \dots = 24.1 \text{ cm}^2$. (to 3sf)	A1	3	Condone missing/wrong units
	Total		6	
3(a)	(Tenth term) = a + (10 - 1) d	M1		
	$\dots = 1 + 9(6) = 55$	A1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6 <i>n</i> –5 OE
(b)(i)	$S_n = \frac{n}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$\frac{n}{2} [2 + 6n - 6] = 7400$	A1		Eqn formed with some expansion of brackets
	$3n^2 - 2n = 7400 \Longrightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50) = 0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A1	2	NMS single ans. 50 B2 CAO NMS 50 and -49.3(3) B1 CAO
	Total		7	

Question	Solution	Marks	Total	Comments
4(a)	$(1-2x)^4 = (1)^4 + 4(1)^3(-2x) + (1)^2(-2x)^3 + (-2x)^4 + (1)^2(-2x)^3 + (-2x)^4 + ($	M1		Any valid method as far as term(s) in x and term(s) in x^2 .
	$6(1^{-})(-2x)^{-} + [4(1)(-2x)^{-} + (-2x)^{-}]$			
	$= [1] - 8x + 24x^2 + [-32x^3 + 16x^4]$	A1		p = -8 Accept $-8x$ even within a series.
		A1	3	$q = 24$ Accept $24x^2$ even within a series.
(b)	x term is $\binom{9}{1} 2^8 x$	M1		OE
	Coefficient of x term is = $9 \times 2^8 = 2304$ (=k)	A1	2	Condone 2304 <i>x</i>
(c)	$(1-2x)^4 (2+x)^9 = (1+px+)(2^9+kx)$	M1		Uses (a) and (b) oe (PI)
	= =+ $kx + px(2^9)$ +	M1		Multiply the two expansions to get x terms
	Coefficient of x is $k + 512p$			
	= 2304 - 4096 = -1792	A1ft	3	ft on candidate's values of k and p . Condone $-1792x$
				SC If $0/3$ award B1ft for $p+k$ evaluated
	Total		8	
5(a)	$\log_a x = \log_a 6^2 - \log_a 3$	M1		One law of logs used correctly
	$\log_a x = \log_a \left(\frac{6^2}{3}\right)$	M1		A second law of logs used correctly
	$\log_a x = \log_a \frac{36}{3} \Longrightarrow x = 12$	A1	3	CSO AG
(b)	$\log_a y + \log_a 5 = 7 \Longrightarrow \log_a 5y = 7$	M1		
	$\Rightarrow 5y = a^7 \text{ or } y = \frac{1}{5}a^7 \text{ or } a = (5y)^{1/7}$	m1 A1	3	Eliminates logs Accept these forms
	Total		6	

MPC2 (cont)					
Question	Solution	Marks	Total	Comments	
6(a)(i)	y-coordinate of A is $27-3^{\circ}$; = 26	M1A1	2		
(ii)	When $x = 3$, $y = 27 - 3^3 = 0 \implies B(3,0)$	B1	1	AG; be convinced	
(b)	h = 1	B1		PI	
	Area $\approx h/2\{\}$ $\{\}= f(0)+f(3)+2[f(1)+f(2)]$ $\{\}= "26" + 0 + 2(24 + 18)$ (Area \approx) 55	M1 A1√	Δ	OE summing of areas of the 'trapezia' on (a)(i) (Σ trap="25"+21+9) on [42 + 0.5x "(a)(i)"]	
	(1104 - 6) - 55		-	$\sin[\frac{1}{2}, 0.5, (a)(1)]$	
(c)(i)	$\log_{10} 3^x = \log_{10} 13$	M1		Takes ln or \log_{10} on both or $x = \log_3 13$	
	$x \log_{10} 3 = \log_{10} 13$	m1		Use of $\log 3^x = x \log 3$ or	
				$\log_3 13 = \frac{\lg 13}{\lg 3} \text{ OE (PI by } \log_3 13 = 2.335$ or better)	
	$x = \frac{\lg 13}{\lg 3} = 2.334717\dots$	A1	3	Must show that logarithms have been used	
	2.5517 10 149				
(ii)	$\{k=\}$ 14	B1	1	Condone $y = 14$; Accept final answer 14 with only zeros after decimal point eg 14.000	
(d)(i)	Translation;	B1;		'Translation'/'translate(d)' B0 if more than one transformation	
	$\begin{bmatrix} 0\\ -27 \end{bmatrix}$	B1	2	Accept full equivalent in words provided linked to 'translation/move/shift' and negative y-direction (Note: B0 B1 is possible)	
(ii)		B1		Correct shape (translation of given curve vertically downwards)	
		B1		Only point of intersection with coord axes is on negative <i>y</i> -axis and curve is asymptotic to the negative <i>x</i> -axis	
			2		
	Total		15		

5

MPC2 (cont		34 -		~	
Question	Solution	Marks	Total	Comments	
7(a)(i)	When $x = 4$, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 = 0$	B1	1	AG Be convinced	
(ii)	$\frac{16}{x^2} = 16x^{-2}$	B1	1	Accept $k = -2$	
(iii)	$\frac{d^2 y}{dx^2} = 3 \times \frac{1}{2} x^{-\frac{1}{2}} + 16 \times (-2) x^{-3} - 0$	M1		A power decreased by 1	
	$\frac{d^2 y}{dx^2} = \frac{3}{2} x^{-\frac{1}{2}}; -32x^{-3}$	A1; A1√	3	candidate's negative integer k [-1 for >2 term(s)]	
(iv)	When $x = 4$, $\frac{d^2 y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$	M1		Attempt to find $y''(4)$ reaching as far as two simplified terms	
	Minimum since $y''(4) > 0$	E1√	2	candidate's sign of $y''(4)$	
	[Alternative: Finds the sign of $y'(x)$ either side of the point where $x=4$, need evidence rather than just a statement: (M1) Correct ft conclusion with valid reason $E1$] [In both, condone absent statement $y'(4)=0$]				
(b)(i)	At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$	B1	1	AG Be convinced	
(ii)	Gradient of normal = $-\frac{1}{12}$	M1		Use of or stating $m \times m' = -1$	
	Equation of normal is $y - 8 = m[x - 1]$	M1		Can be awarded even if m=12	
	$y-8 = -\frac{1}{12}(x-1) \Longrightarrow 12y-96 = -x+1$ $\Longrightarrow 12y+x=97$	A1	3	Any correct form of the equation	
(c)(i)	$\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 \mathrm{d}x =$				
	$\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$	M1 A2,1,0	3	One power correct. A1 if 2 of 3 terms correct candidate's negative integer k Condone absence of "+ c "	
(ii)	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c \qquad (*)$	B1√		y = candidate's answer to (c)(i) with tidied coefficients and with '+c'. (' $y =$ ' PI by next line)	
	When $x = 1, y = 8 \implies 8 = 2 - 16 - 7 + c$	M1		Substitute. (1,8) in attempt to find constant of integration	
	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$	A1	3	Accept $c = 29$ after (*), including $y =$, stated	
	Total		17		

6

MPC2 (cont)		1		
Question	Solution	Marks	Total	Comments
8(a)	Stretch (I) in <i>x</i> -direction (II) scale factor 2 (III)	M1 A1	2	Need(I) and one of (II),(III) M0 if more than one transformation
(b)	$\tan^{-1} 3 = 1.2(49) (=\alpha)$	M1		tan ⁻¹ 3 [PI by 71.(56)°]
	$\{\frac{1}{2}x=\} \pi+\alpha;$	m1		Correct quadrant; condone degrees or mix
	$\frac{1}{2}x = 1.249; 4.3906$			
	x = 2.498 = 2.50 to 3 sf	A1		Condone 2.5 otherwise deduct <u>max</u> of 1
	x = 8.781 = 8.78 to 3 sf	A1	4	mark throughout Q8 from A marks if 'correct' rads. but to 2sf or final answers in degrees. (143°, 503°)
				As usual, accept greater accuracy answers. Ignore extra values outside the given interval (0 to12.6). If > 2 values inside interval lose an A mark for each one.
				NB M1m0A1A0 is possible
	SC after M0 for error tan $x = 6$; Either $x = 1.40(5)$, 4.54(7), 7.68(8), 10.8(3) or $x = 80.5^{\circ}$, 260.5°, 440.5°, 620.5° SC B1 (accept each rounded or trunca			
(c)	$\cos\theta = 0 , \sin\theta - 3\cos\theta = 0$	M1		Need both
	$ \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ or } \tan \theta = 3 $	M1		$ \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ seen/used} $
	$\cos\theta = 0 \implies \theta = \frac{\pi}{2} = 1.57(07)$	B1		Accept $\frac{\pi}{2}$
	or $\theta = \frac{3\pi}{2} = 4.71(23)$	B1		Accept $\frac{3\pi}{2}$
	$\tan \theta = 3 \implies$ $\theta = 1.249; 4.3906 = 1.25, 4.39 \text{ to } 3\text{ sf}$	A1√		If not correct, ft on (b) NB M0M1(B0B0)A1ft is possible
			5	90°; 270°; 71 5(6)°: 251 5(6)°
	Total		11	
	TOTAL		75	