ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \text { Area of sector }=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 5^{2} \times \theta \\
\& 12.5 \theta=8.1 \Rightarrow \theta=0.648
\end{aligned}
\]
\[
\begin{aligned}
\& \text { Arc }=5 \theta ; \\
\& \ldots . .=3.24 \mathrm{~cm} \\
\& \Rightarrow \text { Perimeter }=10+\operatorname{arc}=13.24 \mathrm{~cm}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \(\sqrt{ }\)
\end{tabular} \& 2

3 \& | $\frac{1}{2} r^{2} \theta$ seen or used |
| :--- |
| AG Condone $\theta=0.648$ used to show that area $=8.1$ |
| 5θ |
| PI by a correct perimeter CSO Condone missing/wrong units; condone 3sf i.e. 13.2 if no obvious error NMS 3/3 |

\hline \& Total \& \& 5 \&

\hline 2(a)

(b) \& \[
$$
\begin{aligned}
& \frac{\sin B}{4.8}=\frac{\sin 100}{12} \\
& \sin B=\frac{4.8 \sin 100}{12}[=0.39(392 \ldots)] \\
& (\text { angle } A B C)=23.19(8 \ldots)\left\{=23.2^{\circ} .\right\} \\
& \text { Angle } C=80^{\circ}-23.2^{\circ}=56.8^{\circ} \\
& \text { Area of triangle }=0.5 \times 12 \times 4.8 \times \sin C \\
& \left.\ldots . .=24.09 \ldots=24.1 \mathrm{~cm}^{2} \text {. (to } 3 \mathrm{sf}\right)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 |
| A1 |
| M1 |
| M1 |
| A1 | \& 3 \& | Use of the sine rule |
| :--- |
| Rearrangement |
| AG Need >1 dp eg 23.19 or 23.20 |
| Valid method to find a relevant angle eg C (PI eg by correct $\sin C$) or $23.2^{\circ}+10^{\circ}$ |
| OE eg $0.5 \times 4.8 \times 12 \times \cos (B+10)$ |
| Condone missing/wrong units |

\hline \& Total \& \& 6 \&

\hline \multirow[t]{2}{*}{3(a)} \& (Tenth term) $=a+(10-1) d$ \& M1 \& \&

\hline \& \[
··· ··· ··· ··· ···=1+9(6)=55

\] \& A1 \& 2 \& | NMS or rep. addn. B2 CAO |
| :--- |
| SC if M0 award B1 for $6 n-5 \mathrm{OE}$ |

\hline \multirow[t]{3}{*}{(b)(i)} \& $$
S_{n}=\frac{n}{2}[2+(n-1) 6]
$$ \& M1 \& \& Formula for $\left\{\mathrm{S}_{n}\right\}$ with either $a=1$ or $d=6$ substituted

\hline \& $$
\frac{n}{2}[2+6 n-6]=7400
$$ \& A1 \& \& Eqn formed with some expansion of brackets

\hline \& $$
3 n^{2}-2 n=7400 \Rightarrow 3 n^{2}-2 n-7400=0
$$ \& A1 \& 3 \& CSO AG

\hline \multirow[t]{2}{*}{(ii)} \& $(3 n+148)(n-50)=0$ \& M1 \& \& Formula/factorisation OE

\hline \& $\Rightarrow n=50$ \& A1 \& 2 \& | NMS single ans. 50.. B2 CAO |
| :--- |
| NMS 50 and -49.3(3...) B1 CAO |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MPC2 (cont)

MPC2 (cont)

Question	Solution	Marks	Total	Comments
6(a)(i)	y-coordinate of A is $27-3^{0} ;=26$	M1A1	2	
(ii)	When $x=3, y=27-3^{3}=0 \Rightarrow B(3,0)$	B1	1	AG; be convinced
(b)	$h=1$	B1		PI
	$\begin{aligned} & \text { Area } \approx h / 2\{\ldots\} \\ & \{\ldots\}=\mathrm{f}(0)+\mathrm{f}(3)+2[\mathrm{f}(1)+\mathrm{f}(2)] \\ & \{\ldots\}=" 26 "+0+2(24+18) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		OE summing of areas of the 'trapezia'.. on (a)(i) (\sum trap $=" 25 "+21+9$)
	(Area \approx) 55	A1 \checkmark	4	on [$42+0.5 \times$ "(a)(i)"]
(c)(i)	$\log _{10} 3^{x}=\log _{10} 13$	M1		Takes \ln or $\log _{10}$ on both or $x=\log _{3} 13$
	$x \log _{10} 3=\log _{10} 13$	m1		Use of $\log 3^{x}=x \log 3$ or $\log _{3} 13=\frac{\lg 13}{\lg 3}$ OE (PI by $\log _{3} 13=2.335$ or better)
	$\begin{aligned} & x=\frac{\lg 13}{\lg 3}=2.334717 \ldots \\ & =2.3347 \text { to } 4 \mathrm{dp} \end{aligned}$	A1	3	Must show that logarithms have been used
(ii)	$\{k=\} 14$	B1	1	Condone $y=14$; Accept final answer 14 with only zeros after decimal point eg 14.000
(d)(i)	Translation;	B1;		'Translation'//translate(d)' B0 if more than one transformation
	$\left[\begin{array}{c} 0 \\ -27 \end{array}\right]$	B1	2	Accept full equivalent in words provided linked to 'translation/move/shift' and negative y-direction (Note: B0 B1 is possible)
(ii)		B1		Correct shape (translation of given curve vertically downwards)
		B1		Only point of intersection with coord axes is on negative y-axis and curve is asymptotic to the negative x-axis
			2	
	Total		15	

MPC2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline 7(a)(i) \& When \(x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3(2)+\frac{16}{16}-7=0\) \& B1 \& 1 \& AG Be convinced \\
\hline (ii) \& \[
\frac{16}{x^{2}}=16 x^{-2}
\] \& B1 \& 1 \& Accept \(k=-2\) \\
\hline \multirow[t]{2}{*}{(iii)} \& \[
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=3 \times \frac{1}{2} x^{-\frac{1}{2}}+16 \times(-2) x^{-3}-0
\] \& M1 \& \& A power decreased by 1 \\
\hline \& \[
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{3}{2} x^{-\frac{1}{2}} ; \quad-32 x^{-3}
\] \& \[
\begin{aligned}
\& \text { A1; } \\
\& \text { A } \checkmark \checkmark
\end{aligned}
\] \& 3 \& candidate's negative integer \(k\) [-1 for \(>2\) term(s) \(]\) \\
\hline \multirow[t]{2}{*}{(iv)} \& \begin{tabular}{l}
When \(x=4, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{3}{4}-\frac{32}{64}=\frac{1}{4}\) \\
Minimum since \(y^{\prime \prime}(4)>0\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
E1」
\end{tabular} \& 2 \& Attempt to find \(y^{\prime \prime}(4)\) reaching as far as two simplified terms candidate's sign of \(y^{\prime \prime}(4)\) \\
\hline \& [Alternative: Finds the sign of \(y^{\prime}(x)\) either statement: (M1) Correct ft conclusion with \(\left.y^{\prime}(4)=0\right]\) \& ide of th valid reas \& \& ere \(x=4\), need evidence rather than just a [In both, condone absent statement \\
\hline (b)(i) \& \[
\text { At } P(1,8), \frac{\mathrm{d} y}{\mathrm{~d} x}=3(1)^{\frac{1}{2}}+\frac{16}{1^{2}}-7=12
\] \& B1 \& 1 \& AG Be convinced \\
\hline \multirow[t]{3}{*}{(ii)} \& \[
\text { Gradient of normal }=-\frac{1}{12}
\] \& M1 \& \& Use of or stating
\[
m \times m^{\prime}=-1
\] \\
\hline \& Equation of normal is \(y-8=m[x-1]\) \& M1 \& \& Can be awarded even if \(\mathrm{m}=12\) \\
\hline \& \[
\begin{aligned}
\& y-8=-\frac{1}{12}(x-1) \Rightarrow 12 y-96=-x+1 \\
\& \Rightarrow 12 y+x=97
\end{aligned}
\] \& A1 \& 3 \& Any correct form of the equation \\
\hline \multirow[t]{3}{*}{(c)(i)

(ii)} \& $$
\int 3 x^{\frac{1}{2}}+\frac{16}{x^{2}}-7 \mathrm{~d} x=
$$ \& \& \&

\hline \& $$
\ldots \ldots \ldots=3 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+16 \frac{x^{-1}}{-1}-7 x+c
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A2,1,0 } \\
\jmath
\end{gathered}
$$

\] \& 3 \& | One power correct. |
| :--- |
| A1 if 2 of 3 terms correct candidate's negative integer k |
| Condone absence of " $+c$ " |

\hline \& \[
$$
\begin{equation*}
y=2 x^{\frac{3}{2}}-16 x^{-1}-7 x+c \tag{*}
\end{equation*}
$$

\] \& B1 \checkmark \& \& | $y=$ candidate's answer to (c)(i) with tidied coefficients and with ' +c '. |
| :--- |
| (${ }^{\prime} y=$ ' PI by next line) |

\hline \multirow{2}{*}{(ii)} \& When $x=1, y=8 \Rightarrow 8=2-16-7+c$ \& M1 \& \& Substitute. $(1,8)$ in attempt to find constant of integration

\hline \& $$
y=2 x^{\frac{3}{2}}-16 x^{-1}-7 x+29
$$ \& A1 \& 3 \& Accept $c=29 \operatorname{after}\left({ }^{*}\right)$, including $y=$, stated

\hline \& Total \& \& 17 \&

\hline
\end{tabular}

MPC2 (cont)

